Here are all the objects saved in the output:
library(BEDASSLE)
show(load("sim/CGW_4_MCMC_output1.Robj"))
## [1] "last.params" "LnL_thetas" "LnL_counts" "LnL"
## [5] "Prob" "a0" "aD" "aE"
## [9] "a2" "beta" "samplefreq" "ngen"
## [13] "a0_moves" "aD_moves" "aE_moves" "a2_moves"
## [17] "thetas_moves" "mu_moves" "beta_moves" "aD_accept"
## [21] "aE_accept" "a2_accept" "thetas_accept" "mu_accept"
## [25] "aD_stp" "aE_stp" "a2_stp" "thetas_stp"
## [29] "mu_stp"
fig.dim <- 5
require(knitr)
## Loading required package: knitr
opts_chunk$set(fig.height=fig.dim,fig.width=2*fig.dim,fig.align='center')
First, let’s look at traces of the \(\alpha\) parameters and their acceptance rates:
layout(t(1:2))
plot(aD, xlab="MCMC generation", ylab="value", main="aD")
plot(aD_accept/aD_moves, xlab="MCMC generation", ylab="", main="aD acceptance", ylim=c(0,1))
plot(as.vector(aE), xlab="MCMC generation", ylab="value", main="aE")
plot(aE_accept/aE_moves, xlab="MCMC generation", ylab="", main="aE acceptance", ylim=c(0,1))
plot(a2, xlab="MCMC generation", ylab="value", main="a2")
plot(a2_accept/a2_moves, xlab="MCMC generation", ylab="", main="a2 acceptance", ylim=c(0,1))
And, the log-likelihood trace:
plot(-Prob, xlab="MCMC generation", main="log likelihood")
and mean acceptance rates for the allele-specific global mean (\(\mu\)) and population mean (\(\Theta\)) parameters:
plot(mu_accept/mu_moves, xlab="MCMC generation", ylab="", main="mu acceptance", ylim=c(0,1) )
plot(thetas_accept/thetas_moves, xlab="MCMC generation", ylab="", main="thetas acceptance", ylim=c(0,1) )
Here are autocorrelation traces of the \(\alpha\) parameters:
acf(a0,lag.max=1000,xlab='',ylab='')
acf(a2,lag.max=1000,xlab='',ylab='')
acf(as.vector(aE),lag.max=1000,xlab='',ylab='')
acf(aD,lag.max=1000,xlab='',ylab='')
Also, joint traces of parameters:
layout(matrix(1:6,nrow=3))
cols <- adjustcolor(rainbow(64)[cut(seq_along(a0),breaks=64)],0.5)
varnames <- c("aD","aE","a2","a0")
for (i in 1:3) {
for (j in (i+1):4) {
plot( as.vector(get(varnames[i])), as.vector(get(varnames[j])), col=cols, pch=20, xlab=varnames[i], ylab=varnames[j] )
}
}
Here’s the main thing we are interested in: the posterior distribution of the ratio of the relative strengths of \(\alpha_E\) and \(\alpha_D\):
hist(aE/aD,breaks=100,main="posterior of aE/aD ratio")